Automatic Hierarchical Parallelization of Linear Recurrences
نویسندگان
چکیده
منابع مشابه
Diophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملAutomatic and Interactive Parallelization Automatic and Interactive Parallelization
The goal of this dissertation is to give programmers the ability to achieve high performance by focusing on developing parallel algorithms, rather than on architecture-speciic details. The advantages of this approach also include program portability and legibility. To achieve high performance, we provide automatic compilation techniques that tailor parallel algorithms to shared-memory multiproc...
متن کاملLinear Recurrences via Probability
The long run behavior of a linear recurrence is investigated using standard results from probability theory. In a recent paper [1] in the American Mathematical Monthly, the authors look at several distinct approaches to studying the convergence and limit L of a sequence (xn) given by a linear recurrence. Our approach is to use probability to study the same sequence. The nth term xn of the seque...
متن کاملLecture # 27 : Linear Recurrences
1 Recurrences A linear, first order recurrence is a problem of the form x(j) = a(j)x(j − 1) + y(j), x(1) = y(1) (x(0) = 0), 1 · · · · · · · −a(2) 1 · · · · · · · −a(3) 1 · · · · · · · −a(4) 1 · · · · · · · −a(5) 1 · · · · · · · −a(6) 1 · · · · · · · −a(7) 1 · · · · · · · −a(8) 1 Such a bidiagonal system of equations corresponds to the forward solution of a system Ax = y after LU–factorization o...
متن کاملLinear Vector Recurrences
General solution methods for linear vector recurrences are considered; an algorithm based on partial fraction expansion is shown to be the most efficient way of solving this problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM SIGPLAN Notices
سال: 2018
ISSN: 0362-1340,1558-1160
DOI: 10.1145/3296957.3173168